New Ant Colony Algorithm Method based on Mutation for FPGA Placement Problem
نویسندگان
چکیده مقاله:
Many real world problems can be modelled as an optimization problem. Evolutionary algorithms are used to solve these problems. Ant colony algorithm is a class of evolutionary algorithms that have been inspired of some specific ants looking for food in the nature. These ants leave trail pheromone on the ground to mark good ways that can be followed by other members of the group. Ant colony optimization uses a similar mechanism to solve the optimization problem. Usually the main difficulties of evolutionary algorithm for solving the optimization problem are: early convergence, loss of population diversity, and placing in a local minimum .Therefore, it needs the way that preserves the variation and tries to avoid trapping in local minimum. In this paper by combining ant colony algorithm and mutation hybrid algorithms that leads to the better solution for optimization of FPGA (Field Programmable Gate Array) placement problem is made. They are different types of swarm intelligence algorithm. After designing the algorithm, its parameters tuning have been done by solving several problems, and then the proposed methods have been compared with the other approaches. The results show that in most problems, the proposed hybrid method is able to obtain better solutions and makes fewer errors.
منابع مشابه
new ant colony algorithm method based on mutation for fpga placement problem
many real world problems can be modelled as an optimization problem. evolutionary algorithms are used to solve these problems. ant colony algorithm is a class of evolutionary algorithms that have been inspired of some specific ants looking for food in the nature. these ants leave trail pheromone on the ground to mark good ways that can be followed by other members of the group. ant colony optim...
متن کاملAnt Colony Algorithm for the Single Loop Routing Problem
In this paper, a new algorithm for solving the single loop routing problem is presented. The purpose of the single loop routing problem(SLRP) is to find the shortest loop for an automated guided vehicle covering at least one edge of each department of a block layout. First it shown that this problem can be represented as a graph model. Then a meta-heuristic algorithm based on and colony system ...
متن کاملAnt Colony Algorithm for the Single Loop Routing Problem
In this paper, a new algorithm for solving the single loop routing problem is presented. The purpose of the single loop routing problem(SLRP) is to find the shortest loop for an automated guided vehicle covering at least one edge of each department of a block layout. First it shown that this problem can be represented as a graph model. Then a meta-heuristic algorithm based on and colony system ...
متن کاملPopulation based ant colony optimization on FPGA
We propose to modify a type of ant algorithm called Population based Ant Colony Optimization (P-ACO) to allow implementation on an FPGA architecture. Ant algorithms are adapted from the natural behavior of ants and used to find good solutions to combinatorial optimization problems. General layout on the FPGA and algorithmic description are covered. The most notable achievements featured in this...
متن کاملMin-max Vehicle Routing Problem Based on Ant Colony Algorithm
To minimize the length of travelling distance of the longest sub-route in vehicle routing problem, the max-min ant system with parameter adaptation is adopted, which can be applied to different datasets in practice. Routes are constructed by sequential and parallel methods for the customers with clustering and random distribution respectively. Since the behavior of ant colony algorithm depends ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 02 شماره 1
صفحات 53- 60
تاریخ انتشار 2013-12-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023